Combining Disparate Information for Machine Learning
نویسنده
چکیده
Combining Disparate Information for Machine Learning by Ko-Jen Hsiao Chair: Alfred O. Hero This thesis considers information fusion for four different types of machine learning problems: anomaly detection, information retrieval, collaborative filtering and structure learning for time series, and focuses on a common theme – the benefit to combining disparate information resulting in improved algorithm performance. In this dissertation, several new algorithms and applications to real-world datasets are presented. In Chapter II, a novel approach called Pareto Depth Analysis (PDA) is proposed for combining different dissimilarity metrics for anomaly detection. PDA is applied to video-based anomaly detection of pedestrian trajectories. Following a similar idea, in Chapter III we propose to use a similar Pareto Front method for a multiple-query information retrieval problem when different queries represent different semantic concepts. Pareto Front information retrieval is applied to multiple query image retrieval. In Chapter IV, we extend a recently proposed collaborative retrieval approach to incorporate complementary social network information, an approach we call Social Collaborative Retrieval (SCR). SCR is applied to a music recommendation system that combines both user history and friendship network information to improve recall and weighted recall performance. In Chapter V, we propose a framework that combines time series data at different time scales and offsets
منابع مشابه
Evaluating machine learning methods and satellite images to estimate combined climatic indices
The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...
متن کاملUsing Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کاملThe machine learning process in applying spatial relations of residential plans based on samples and adjacency matrix
The current world is moving towards the development of hardware or software presence of artificial intelligence in all fields of human work, and architecture is no exception. Now this research seeks to present a theoretical and practical model of intuitive design intelligence that shows the problem of learning layout and spatial relationships to artificial intelligence algorithms; Therefore, th...
متن کاملOn the Direction of Discrimination: An Information-Theoretic Analysis of Disparate Impact in Machine Learning
In the context of machine learning, disparate impact refers to a form of systematic discrimination whereby the output distribution of a model depends on the value of a sensitive attribute (e.g., race or gender). In this paper, we present an information-theoretic framework to analyze the disparate impact of a binary classification model. We view the model as a fixed channel, and quantify dispara...
متن کاملSTORM - A Novel Information Fusion and Cluster Interpretation Technique
Abstract. Analysis of data without labels is commonly subject to scrutiny by unsupervised machine learning techniques. Such techniques provide more meaningful representations, useful for better understanding of a problem at hand, than by looking only at the data itself. Although abundant expert knowledge exists in many areas where unlabelled data is examined, such knowledge is rarely incorporat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014